基于高硫煤燃烧的NOx排放控制优化
摘 要:结合某350MW超临界
燃烧器定制掺烧高硫煤的运行情况,为控制氮氧化物(NOx)的排放,提出基于燃烧调整的喷氨优化、动态偏差控制自动优化策略等措施。结果表明:该方法在掺烧高硫煤工况下控制NOx排放的效果良好,可为同类型机组提供参考。
关键词:
燃烧器定制; 高硫煤; NOx; 燃烧调整; 喷氨优化;
随着深入落实《煤电节能减排升级改造行动计划》,目前绝大多数燃煤机组已接近“燃气轮机组排放限值”,即烟尘、二氧化硫(SO2)、氮氧化物(NOx)的排放质量浓度分别达到10mg/m3、35mg/m3、50mg/m3的限值。
受煤炭市场供应的影响,部分电厂需要掺烧高硫煤。实际燃用煤的硫含量大幅升高后,一方面会造成脱硫系统出力和石灰石耗量的明显增加,但因多数脱硫系统设计裕量较大,SO2排放质量浓度在可控范围内;另一方面,在燃烧高硫煤时为防止水冷壁区域出现严重的高温腐蚀和结渣,主要采取增加燃烧区风量的调整方式,这会使
燃烧器定制炉膛出口即选择性催化还原(SCR)脱硝系统入口的烟气中NOx含量显著升高,影响对SCR脱硝系统出口指标的控制,即出现了耗氨(NH3)量增加、NH3与NOx混合均匀性降低及NH3逃逸率升高等问题。同时,高硫煤燃烧产物中SO2含量的增加,一定程度上增加SCR脱硝反应器中SO2/三氧化硫(SO3)转换率,也促进烟气中硫酸铵或硫酸氢铵的生成,增加空气预热器等尾部烟道堵塞的风险,进而多方面影响到SCR脱硝系统的安全稳定运行。笔者结合某350MW超临界燃煤
燃烧器定制实际掺烧高硫煤的经验,对SCR脱硝系统运行参数进行分析,总结运行调整和控制经验。
01
燃烧器定制及SCR脱硝系统该
燃烧器定制采用DG1159/25.4-Ⅱ型超临界参数变压运行螺旋管圈直流炉,前后墙对冲燃烧方式,
燃烧器定制主要参数见表1(BMCR工况为
燃烧器定制最大连续蒸发量工况,BRL工况为
燃烧器定制额定工况),文中的NOx排放质量浓度均为折算到标准状态下的数值。
燃烧器定制烟气脱硝采用SCR脱硝技术,液氨作为还原剂;催化剂层数按“2 1”模式布置,
燃烧器定制已进行超低排放改造,SCR脱硝催化剂实际装设3层。表1
燃烧器定制主要技术参数
02掺烧高硫煤后运行参数变化
燃烧器定制的设计煤种及燃用的低硫煤和高硫煤的煤种分析见表2。原先长期燃用较为接近设计煤种的低硫煤,
燃烧器定制、SCR脱硝系统及脱硫系统均正常稳定运行。掺烧质量分数约为40%的高硫煤后,直接造成脱硫系统出力、石灰石耗量的增加;但因脱硫系统的设计裕量较大,脱硫系统出口的SO2质量浓度在可控范围内。燃用高硫煤易使
燃烧器定制水冷壁区域产生高温腐蚀和结渣,可通过增加主燃区风量、调整制粉系统组合等燃烧配风方式有效控制该问题;但燃用高硫煤易使
燃烧器定制炉膛出口NOx质量浓度升高,烟道中硫酸铵或硫酸氢铵的生成量增加,会对SCR脱硝系统出口NOx质量浓度、SO2/SO3转换率、NH3与NOx的混合效果、NH3逃逸率等关键指标的控制,以及SCR脱硝反应器本体和空气预热器等设备的安全稳定运行产生较大影响。表2 煤种分析(%)表3 掺烧高硫煤前后SCR脱硝反应器主要参数对比在BRL工况,
燃烧器定制掺烧高硫煤前(燃用质量分数为100%的低硫煤)、掺烧高硫煤后(燃用低硫煤与高硫煤的质量比为6∶4),SCR脱硝反应器主要参数对比见表3。表3 掺烧高硫煤前后SCR脱硝反应器主要参数对比03运行参数变化分析
3.1 入口NOx质量浓度和耗氨量增加
掺烧高硫煤后,为有效控制炉膛水冷壁区域的高温腐蚀和结渣,采取的燃烧配风方式使
燃烧器定制炉膛出口NOx质量浓度明显增加。典型表现为:炉膛出口过量空气系数未有明显改变,却明显增加炉膛主燃区风量,而减少用于控制
燃烧器定制出口NOx质量浓度的分级燃尽风量(未掺烧高硫煤前,主燃区风、燃尽风的质量流量占比分别为75%、25%;掺烧高硫煤后,主燃区风、燃尽风的质量流量占比分别为90%、10%);增加
燃烧器定制最上层运行磨煤机的煤量及提高一次风量的燃烧配风方式,使
燃烧器定制燃烧区域处于相对“富氧性”,有利于控制炉膛水冷壁区域的高温腐蚀和结渣,却在一定程度上提高炉膛出口烟气温度,增强煤粉初始燃烧时与空气的混合,加速燃料型NOx的生成,使SCR脱硝反应器入口NOx质量浓度明显增加,进而明显增加液氨耗量(见表3)。
3.2 SO2/SO3转换率增加掺烧高硫煤后,SCR脱硝反应器入口和出口烟气中SO2、SO3的体积分数均有明显增加,这与煤中硫含量增加后的燃烧表现一致。SCR脱硝反应器的SO2/SO3转换率略有增加,主要原因为: 1)煤中硫含量越高,煤燃烧阶段SO2氧化生成的SO3越多;(2)为抑制水冷壁区域的高温腐蚀和结渣问题而采取燃烧配风的方式,提高炉膛出口烟气温度,加剧烟气中SO3的生成;(3)SCR脱硝催化剂是在原设计硫含量较低的情况下制定出V2O5、WO3等活性组分配比,而实际燃用高硫煤,催化剂中V2O5对SO2的催化氧化作用增强,使SO3生成量增加等。燃用高硫煤后,SCR脱硝反应器的SO2/SO3转换率有一定增加(见表3),不利于催化还原反应。3.3 NH3与NOx混合均匀性降低掺烧高硫煤后,SCR脱硝反应器两侧出口的NOx质量浓度和NH3逃逸率分布均匀性明显下降,局部出口截面参数明显超标,且两侧SCR脱硝反应器NH3逃逸率整体明显增加(见表3)。图1为BRL工况下掺烧高硫煤前后,SCR脱硝反应器出口的NOx质量浓度和NH3逃逸率。由图1可得:掺烧高硫煤后,SCR脱硝反应器两侧出口各测点的NOx质量浓度均有增加,局部出现超标点(NOx质量浓超过60mg/m3);平均NH3逃逸率由1.97μL/L增加至2.68μL/L,局部测点的NH3逃逸率为2.8~3.3μL/L,NH3和NOx混合均匀性明显下降,SCR脱硝反应器内催化剂的反应效率明显下降,NH3逃逸率增加,且增加下游空气预热器堵塞的风险。 图1 SCR脱硝反应器出口的NOx质量浓度和NH3逃逸率掺烧高硫煤后,为有效控制炉膛水冷壁区域的高温腐蚀和结渣,增加主燃区风量,相应大幅减弱了上部燃尽风的调节作用,会使SCR脱硝反应器入口NOx质量浓度显著增加。为满足排放要求,需要喷入更多的液氨。增加主燃区风量,会在一定程度上增大炉膛出口烟气的流速和温度、SCR脱硝反应器入口NOx质量浓度的偏差;同时,实际燃烧煤种硫含量突增会使炉膛水冷壁区域、尾部烟道等区域产生不同程度的腐蚀、结渣、飞灰沾污等问题,进一步增加SCR脱硝反应器入口烟气流场不均匀性,使SCR脱硝反应器入口NOx质量浓度分布偏差增大、SO2/SO3转换率增加。图2为BRL工况下掺烧高硫煤前后,SCR脱硝反应器入口的NOx质量浓度、烟气温度和流速。由图2可得:各运行参数的分布偏差均有一定增加,NH3和NOx混合均匀性变差,不利于反应进行,会使NH3逃逸率大幅增加。 图2 SCR脱硝反应器入口的NOx质量浓度、烟气温度和流速
04优化措施掺烧高硫煤后,炉膛内燃烧状况发生明显改变,水冷壁上部易产生不同程度的高温腐蚀、结渣。燃烧配风调节会使SCR脱硝反应器的入口的烟气温度和流速、NOx质量浓度等运行参数发生明显变化,导致关键控制指标变差,影响SCR脱硝系统的运行,增加硫酸铵或硫酸氢铵生成量,并且易使空气预热器发生严重堵塞。应基于
燃烧器定制燃烧优化进行喷氨调整工作,并且不能仅通过喷氨调整解决;
燃烧器定制燃烧优化需要兼顾控制水冷壁区域的高温腐蚀、结渣和SCR脱硝反应器入口的NOx质量浓度。4.1 燃烧调整
4.1.1 出口粉管调平及磨煤机入口风量控制制粉系统长期运行,磨煤机分离器挡板和出口粉管磨损较为严重,且燃烧煤种变化造成煤可磨性指数变化等,使磨煤机各出口粉管至
燃烧器定制嘴的阻力发生明显改变,造成各粉管的出口风速和含粉量具有明显偏差(风速相对偏差超过10%、煤粉质量分数相对偏差超过17%),这是各运行参数分布偏差增大的主要原因。燃烧高硫煤时,大幅度增加了对应磨煤机入口风量,虽然有利于推迟着火、减轻
燃烧器定制区域水冷壁的高温腐蚀和结渣,但是也在一定程度上增加燃烧偏差和SCR脱硝系统入口烟气流场分布偏差。应定期对磨煤机出口粉管进行调平,控制粉管出口风速相对偏差在5%以内、煤粉质量分数相对偏差在10%以内,调平前后SCR脱硝反应器入口NOx质量浓度见图3。由图3可得:调平后,SCR脱硝反应器入口NOx质量浓度分布均匀性明显提高,可提高NH3和NOx混合均匀性和反应效率。燃烧高硫煤时,不应大幅度增加磨煤机入口风量,可视
燃烧器定制区域炉膛腐蚀、结渣情况及炉膛出口烟气温度偏差的变化,小幅度增加磨煤机入口风量。 图3 调平前后SCR脱硝反应器入口NOx质量浓度4.1.2
燃烧器定制配风调整掺烧高硫煤后,
燃烧器定制配风调整不仅要有效控制炉内水冷壁区域内的高温腐蚀、结渣,还需要兼顾炉膛出口NOx质量浓度。不能只增加主燃区风量及各
燃烧器定制辅助二次风量,应结合烟气温度偏差、结渣量及NOx质量浓度,保证燃尽风量,增加分级燃烧效应,减少NOx生成量。4.2 喷氨调整喷氨调整优化主要根据SCR脱硝反应器出口的NOx质量浓度和NH3逃逸率的分布情况,调整各喷氨支管路的手动调节阀的开度。考虑到掺烧高硫煤后,下游空气预热器阻力和NH3逃逸率明显增加,不宜对各喷氨支管路大幅度进行调整,对于出口NOx质量浓度偏高区域应适当增加各喷氨支管路手动调节阀开度;而出口NOx质量浓度偏高区域则应关小,但仍应保留一定开度。为防止喷氨格栅发生问题,在喷氨调整优化中应注意以下几点:(1) 检查喷氨流量和稀释风量的准确性。(2) 防止部分喷氨格栅喷嘴积灰堵塞。稀释风机运行风量较少,或非正常停运造成烟气中的飞灰在喷嘴出口积灰堵塞,引发喷氨不均匀。(3) 防止喷氨格栅喷氨手动调节阀未调整至最佳位置,造成反应器区域NH3分布不均匀。4.3 控制动态偏差常规SCR脱硝喷氨控制系统采用串级控制方式,即主回路调节实际SCR脱硝反应器出口NOx质量浓度测量均值,副回路调节实际喷氨流量,将
燃烧器定制主控指令、SCR脱硝反应器入口NOx质量浓度测量均值等修正量叠加到副回路进行调节,增强调节效果。但
燃烧器定制燃烧工况改变时,尤其是燃烧高硫煤时,SCR脱硝反应器入口NOx质量浓度突升较为明显,且烟气在线监测系统(CEMS)测量滞后明显,原采取常规串级控制方式及时性不足,易造成NOx排放质量浓度超标或液氨喷射过量的问题。故增设SCR脱硝系统入口及出口的NOx质量浓度变化量对供氨调节阀前馈作用的环节,控制调节动态偏差以提高SCR脱硝系统自动响应性(见图4)。 图4 控制动态偏差的SCR脱硝系统逻辑主要控制思路如下:(1) 增设SCR脱硝系统入口NOx质量浓度变化量对喷氨调节阀前馈作用的环节,即入口NOx质量浓度在惯性时间的变化量,经函数折算后直接叠加到喷氨调节阀PID前馈。当入口NOx质量浓度突升时,可快速开启喷氨调节阀;入口NOx质量浓度突升速度越快,喷氨调节阀的动作幅度越大。(2) 增设SCR脱硝系统出口NOx质量浓度变化量对喷氨调节阀前馈作用的环节,即出口NOx质量浓度在惯性时间的变化量,经函数折算后直接叠加到喷氨调节阀PID前馈。当出口NOx质量浓度突升时,可快速开启喷氨调节阀;出口NOx质量浓度突升速度越快时,喷氨调节阀的动作幅度越大。(3) SCR脱硝系统入口及出口的NOx质量浓度变化量对喷氨调节阀的前馈作用,均通过设置上升速率和下降速率,保证喷氨调节阀可以快速开启和缓慢关闭,增加作用时间,从而抑制SCR脱硝系统出口NOx质量浓度增加。(4) 根据SCR脱硝系统入口NOx质量浓度对喷氨调节阀的前馈作用,增设针对出口NOx质量浓度变化量前馈作用的修正函数。当SCR脱硝系统入口NOx质量浓度变化量对喷氨调节阀的前馈作用增强时,出口NOx质量浓度变化量对喷氨调节阀的前馈作用可适当减弱。避免当入口NOx质量浓度突升导致出口NOx质量浓度突升时,前馈作用叠加后喷氨调节阀开度过大,出现液氨喷射过量,从而增加NH3逃逸率。(5) 增设针对NH3逃逸率高、喷氨调节阀开度过大等问题,增设闭锁喷氨调节阀的逻辑回路。4.4 优化高硫煤的掺烧方式
燃烧器定制在中低负荷运行时,可适当提高高硫煤的掺烧比例;而
燃烧器定制在75%以上负荷运行时,因炉膛温度高,硫含量增加不仅带来明显的腐蚀、结渣问题,而且
燃烧器定制炉膛出口烟气温度高,NOx生成量大,不易调节,可适当降低高硫煤的掺烧比例。通过试验可得:在中低负荷时将高硫煤掺烧质量分数仍控制在40%,而在75%以上负荷时可将高硫煤掺烧质量分数降低至20%~25%,
燃烧器定制可长期稳定运行,不仅高温腐蚀、结渣问题得到有效减缓和抑制,NOx质量浓度也较为稳定。电厂在燃料中添加MgO或Mg(OH)2,用于在燃烧期间降低
燃烧器定制炉膛出口SO3生成量,有利于尾部烟气流场的均匀分布。4.5 催化剂成分优化在后续SCR脱硝系统的改造过程中,应充分考虑实际燃烧高硫煤的情况,调整SCR脱硝反应器中催化剂活性组分的配比,采用抗硫性强、适应高硫烟气环境的SCR催化剂。
05结语掺烧高硫煤后,
燃烧器定制燃烧工况发生明显改变,为控制水冷壁区域的高温腐蚀和结渣,通常采用的增大主燃区风量和改变制粉系统出力的调整方式,会造成SCR脱硝反应器的运行环境发生明显变化,一定程度上影响SCR脱硝系统的运行。入口NOx质量浓度和液氨耗量明显增加、SO2/SO3转换率也略有增加、NH3与NOx混合均匀性降低、NH3逃逸率增加、硫酸铵或硫酸氢铵生成量增加,易使下游空气预热器发生堵塞。掺烧高硫煤时应注意对SCR脱硝系统关键运行参数进行监视和分析;在燃烧调整的基础上及时进行喷氨调整优化;SCR脱硝系统应加强对入口及出口的NOx质量浓度动态偏差的调节响应能力;并通过优化掺烧及调整催化剂活性组分配比等方式进行控制。
内容来源:烧
燃烧器定制的孩子