威旭环保提供燃烧器定制,厂家直销,欢迎来电咨询 —— 专享热线: 4000-133-168


焦炉烟道废气及上升管荒煤气的余热利用

2022-07-16 11:22:00

焦炉烟道废气及上升管荒煤气的余热利用
焦炉烟道废气及上升管荒煤气的余热利用本文介绍了热管技术、煤调湿、负压蒸氨等烟道废气余热利用技术,并通过对余热回收效果进行对比分析,指出独立焦化企业采用焦炉煤气加热,宜采用热管技术生产蒸汽(或负压蒸氨);钢铁联合企业采用高炉煤气加热,建议采用煤调湿技术。1、前言 焦炉烟道废气温度为180℃—300℃,其带出热约占焦炉总输出热量的17%,目前大多数焦化厂将焦炉烟道废气通过烟囱放散至大气中,造成极大的能源浪费。在当前提倡循环经济、可持续发展的背景下,对焦炉烟道废气余热进行回收利用,具有巨大的经济效益和节能减排意义。目前焦炉烟道废气余热利用技术主要有热管技术、煤调湿、负压蒸氨、取暖和生产热水洗浴等。
2、烟道废气余热利用途径
2.1、热管技术 近几年,用热管余热燃烧器定制回收焦炉烟道废气余热生产蒸汽技术,因其投资省,见效快而快速发展。烟道废热余热回收生产蒸汽的工艺原理:热流体的热量由热管传给放热端水套管内的水,并使其汽化,所产汽—水混合物经蒸汽上升管达到汽包,经集中分离后再经蒸汽主控阀输出。由于热管不断将热量输入水套管内的水,并通过外部汽—水管道的上升及下降完成基本的汽—水循环,达到将热流体降温,并转化为蒸汽的目的。
焦炉烟道废气余热生产蒸汽的工艺流程:在焦炉主烟道翻板阀前开孔,将焦炉主烟道废气引出,经调节型蝶阀入余热回收系统,换热降温后约170 ℃的烟气通过风机抽送,再经开关型蝶阀排入主烟道翻板阀后的地下主烟道,最后经焦炉烟囱排入大气。燃烧器定制水被加热后汽化,经汽包并计量后并入蒸汽管网,供各生产车间使用。余热回收系统由软化水处理装置、除氧器、水箱、除氧给水泵、燃烧器定制给水泵、热管蒸汽发生器、软水预热器汽包、上升管、下降管等组成。其核心技术是热管技术回收烟气中的显热,将软化水加热成水蒸气,其工艺流程图如图所示。
焦炉烟道废气余热回收生产蒸汽系统是一项节能减排工程,产生的饱和蒸汽可并入焦化厂蒸汽管网,供低压蒸汽用户使用。
2.2、煤调湿 煤调湿是将炼焦煤在装炉前除去一部分水分,保持装炉煤水分稳定在6%左右,然后装炉炼焦。日本、俄罗斯等国家普遍使用,在我国煤调湿已成为焦化行业重点开发并积极推广的技术。利用焦炉烟道废气煤调湿工艺不但可以节省能源,减少废气、废水、废热的排放,而且可以提高装炉煤堆密度及炼焦初期升温速度、缩短结焦时间,从而实现节能降耗的目的。 目前,煤调湿装置的热源主要有导热油、蒸汽和焦炉烟道废气等。相比较而言,以导热油和蒸汽为热源的煤调湿工艺存在设备繁琐、运行费用高等问题;以焦炉烟道废气为热源的煤调湿工艺可以利用废气余热干燥入炉煤,热效率高,节能效果好。目前以焦炉烟道废气为热源的煤调湿工艺主要有流化床式、风动选择式和沸腾流化床式等。 2.2.1、流化床煤调湿 1996年10月日本在北海制铁公司室兰厂投产了采用焦炉烟道废气对煤料干燥的流化床煤调湿装置,其工艺流程为:将粉碎后的煤料由煤仓送往流化床干燥机,从分布板进入的焦炉烟道废气直接与煤料接触,对煤料进行干燥,调湿后的粗煤粒从干燥机排入螺旋输送机,剩余的煤粉随焦炉烟道废气进入袋式除尘器,回收的煤粉通过螺旋输送机送入皮带机上,为抑制扬尘,采用加湿机对干煤粉适当加湿,使煤粉和粗煤粒一起经皮带机送到焦炉煤塔,工艺流程图见图2。 流化床煤调湿的工艺特点:该装置位于备煤车间粉碎机后,在流化床干燥机内,利用布风喷嘴喷出高速斜向气流使煤料流化而移向出口;只干燥和脱粉,不分级。
2.2.2、风动选择煤调湿 2007年济钢投产了一套风动选择煤调湿装置。该装置位于粉碎机前,具有风选功能,首先将<3 mm合格粒度的煤料风选出来,减轻粉碎机负荷;布袋除尘器滤出的煤粉,压成型煤,入炉炼焦。其工艺流程:配合煤A 经布料器首先进入风选调湿器,焦炉烟道废气用鼓风机在风选调湿器的下部鼓入,在风选调湿器的上方流动的煤层建立沸腾层,轻质颗粒、细颗粒被干燥分离成细颗粒煤流B直接进入焦炉煤塔。而重质颗粒、大颗粒被分离成粗颗粒煤流 C,送入破碎机粉碎,在此粉碎的煤料D,经过转运站,在风选调湿器入口前重新与配合煤初次煤流A合流后成煤料E,进入风选调湿器进行再次调湿。其工艺流程图如图所示。 风动选择煤调湿工艺特点:该装置位于备煤车间粉碎机前,具备风选功能,<3mm的煤料直接送往煤塔,其中的大颗粒、重质颗粒进入粉碎机进行粉碎,粉碎后的煤再进行风选,形成闭路循环,装炉煤中不存在大颗粒、重质颗粒,水分降至6%~7%,不仅实现了入炉煤的风动选择粉碎,而且实现了对入炉煤水分的调湿;布袋除尘器滤出的煤粉,压成型煤入炉炼焦。 2.2.3、振动流化床煤调湿 振动流化床煤调湿装置可以用于入炉煤的煤调湿,也可以用于配合煤分级调湿。 其工艺流程:煤料通过播洒装置连续抛洒到振动流化床分级干燥机上,在振动力和高速气流作用下,所有煤料处于剧烈运动中。>3mm的大颗粒煤料送往粉碎机;中颗粒煤料从布风板中心区随气流快速上升,沿两侧壁下滑回落或从低速处回落,如此循环几次后,即可到达出料端;小颗粒随气流一起上升,随气流带出,由除尘器收集,工艺流程图如图4所示。 振动流化床煤调湿工艺特点:该煤调湿装置位于粉碎机前,煤料在振动流化床分级干燥机的床面上,在振动力和高速气流作用下,所有颗粒都处于剧烈运动中;不同颗粒有不同的运动状态;细颗粒承受气流床干燥,中颗粒承受内循环流化床干燥,大颗粒承受振动流化床干燥;分级效率高;对不同粒级煤粒干燥具有选择性;>3mm的调湿煤从干燥机排出后,送粉碎机粉碎。 2.2.4、煤调湿技术需注意的问题 1)因调湿后煤料水分降低,运输过程中产生的粉尘增加,因此必须加强皮带、通廊等装置严密性以及设置除尘设施。 2)炭化室和上升管结石墨现象加重,必须设置除石墨设施,有效清除石墨,以免影响焦炉操作。 3)调湿后煤粉混入煤气净化系统,焦油质量下降。必须在初冷器前增设空喷塔对荒煤气进行洗涤,同时采用超级离心机对焦油进行脱渣脱水,以确保焦油质量。 2.3、负压蒸氨 负压蒸馏工艺技术为利用液体混合物中各组分挥发度不同以及液体沸点随着压力的降低而降低的原理,将液体混合物预热到一定温度后,送入负压蒸馏塔内进行负压蒸馏,同时塔底加热,从而将液体混合物各组份分离,该技术可以降低操作温度、达到节能降耗的效果。 以焦炉烟道废气为热源的负压蒸氨工艺流程:剩余氨水经换热器换热后送入蒸氨塔进行蒸馏,蒸氨塔顶氨汽经分缩器、冷却器冷却后,冷却氨水进入回流槽,槽顶不凝汽在真空装置吸力作用下,经冷却器冷却后进入吸煤气管道中;槽底氨水用回流泵抽出,一部分送蒸氨塔顶回流,一部分作为产品氨水外送。蒸氨塔底蒸氨废水进入烟气热管换热器循环加热后返回蒸氨塔内;另一部分蒸氨废水与原料剩余氨水换热降温后送废水处理装置。其工艺流程图如图所示。 传统的蒸氨方法是直接利用蒸汽来加热的,冷凝后与塔底废水一起排出,蒸氨工序不但没有形成废水减排,而且增加了蒸氨废水,并消耗大量的蒸汽热能,造成了能量的浪费,也污染了环境。 负压蒸氨技术的工艺原理与焦炉烟道废气热管技术生产蒸汽相同,都是是利用焦炉烟道废气的余热,所不同的是负压蒸氨技术直接使用热管换热器加热蒸氨废水,而不生产蒸汽。在负压条件下蒸氨,蒸氨塔塔顶压力由原来的10kPa降至-40kPa左右,蒸馏温度由105℃降至80℃左右。 3、余热回收效益对比分析 由于焦炉加热用煤气种类的不同,焦炉烟道废气余热利用的温度差别很大,以年产120万t焦炭的焦炉烟道废气利用热管技术生产蒸汽(或负压蒸氨)和煤调湿技术进行对比,对比结果见表。
当焦炉烟道废气余热生产蒸汽(或负压蒸氨)时,独立焦化企业焦炉大多用焦炉煤气加热,烟道废气的进口温度较高,可以使用的废气温差高,因此蒸汽产量高。而钢铁联合企业焦化厂大多用高炉煤气加热,烟道废气进口温度较低,蒸汽产量少。由表1可知,采用焦炉煤气加热的烟道废气蒸汽产量比高炉煤气加热的蒸汽产量多。 当焦炉烟道废气用于煤调湿时,焦炉煤气加热因焦炉煤气中含氢量高,因此烟道废气中水分含量高,将其作为煤调湿热源时,不利于煤水分的蒸发,通常只能将入炉煤水分降低约2.5%。而采用高炉煤气加热时,高炉煤气中含氢少,因此烟道废气中水分含量少,烟道废气可以满足煤调湿热量的需要,现通常将入炉煤水分由10%降低至6%。由表1可知,高炉煤气加热的烟道废气用于煤调湿比焦炉煤气加热时可减少的炼焦耗热量更多。 当采用焦炉煤气加热时,尽管煤调湿技术可以使用的烟道废气温差更大,但由于烟道废气中水分含量高,并不利于煤的调湿。且煤调湿技术工艺流程长,设备复杂,相对热损失高。因此,由表1可知,烟道废气采用热管技术生产蒸汽的经济效益比煤调湿技术的经济效益好。 当采用高炉煤气加热时,煤调湿技术可以使用的废气温差明显比热管技术的高,并且煤调湿技术有降低焦化废水产生量、提高焦炭质量和产量等其他经济效益。因此,由表1可知,煤调湿技术的经济效益明显比热管技术生产蒸汽的经济效益好。 综上所述,对于独立焦化企业,由于采用焦炉煤气加热,因此不建议采用煤调湿技术,而宜采用烟道废气余热热管技术生产蒸汽(或负压蒸氨)。对于钢铁联合企业,由于采用高炉煤气加热,因此建议采用烟道废气余热煤调湿技术。炼焦荒煤气余热回收利用焦炉上升管余热回收利用目前世界焦化业传统的方法是喷洒大量70℃~75℃的循环氨水,循环氨水吸热而大量蒸发,使荒煤气温度得以降低,进入后序煤化工产品回收加工工段。这样的结果是,荒煤气带出的热量被白白浪费掉,既流失了荒煤气热能,还增加了水资源的消耗,但荒煤气余热回收技术尚未取得实质性突破。
早在上世纪70年代,首钢、太钢采用夹套上升管,夹套内冷却水吸收荒煤气所携带的热量而汽化,产生蒸汽,实现热能的回收利用,简称为“焦炉上升管汽化冷却装置”,曾一度被多家焦化企业采用。北京焦化在上升管体卷边结构、焊接方法方面进行了多项改进,仍不能完全解决上升管的简体焊缝拉裂、漏水、漏汽等问题,运行几年后终因系统安全稳定性、运行成本等方面原因纷纷停用。
焦炉上升管汽化冷却装置在我国的应用经历了发展、停滞、再研发、再停滞的过程。在总结水套上升管教训的基础上,济钢把冷却水换成了导热油,导热油与高温荒煤气间接换热,被加热的高温导热油用于煤焦油蒸馏、干燥入炉煤、蒸氨等,但导热油的合适的使用温度一般在350℃以下,在700℃温度区间高温下容易变质,而且上升管导热油夹套制造和防止荒煤气在余热回收装置积碳、积焦油的技术难题尚须攻克。
近年来, 随着国内各企业的节能意识逐步加强和科技水平的提高, 为了降低焦化工序能耗, 如何回收利用焦炉上升管荒煤气余热再次成为行业关注的焦点。特别是分布式余热回收技术——介质浴式的应用, 为用户焦炉上升管荒煤气余热回收提供一种安全可靠的解决方案。
1、分布式余热回收技术—介质浴式技术特点
相对于常规直接汽化冷却式焦炉上升管余热回收技术,该技术基于上升管荒煤气高温显热资源特点, 采用导热油作为换热媒介, 独创上升管余热回收装置分布式余热回收技术, 维持上升管内壁温度在500℃以上, 成功解决上升管荒煤气余热回收面临的“挂焦油、泄漏、干烧”三大难题, 确保工艺生产安全, 实现余热资源高效回收利用;该系统主要设备有上升管换热器、导热油蒸发器、导热油过热器、储油槽、膨胀罐、除氧器、除氧泵、给水泵、强制导热油循环泵以及钢支架、导热油管、进出水管以及电仪设备等设施。
1.1 主要系统流程
系统包括荒煤气系统、汽水系统、热媒系统、氮封系统、排污系统、放空系统和控制系统, 系统设备包括主体设备、附属设备等。
荒煤气系统:来自炭化室的荒煤气(~800℃) →上升管取热装置 (更换原上升管) →集气管→荒煤气管网。
汽水系统:常温化水→化水箱→除氧器及水箱→导热油蒸发器→导热油过热器→用户主管网。
热媒系统:导热油由循环油泵输出→上升管取热装置→导热油过热器→导热油蒸发器→油汽分离器→循环油泵, 完成一个循环。
1.2 主体设备
1.2.1 上升管取热装置
上升管取热装置由内、中、外三部分组成:内层采用耐高温、耐磨损、抗腐蚀合金钢材料, 其内壁有特殊涂层, 能够耐受长时间干烧, 同时避免了高温硫腐蚀;中间层为导热油吸热层,设有合金钢材质导热油传热管, 导热油充分吸收从内层来的荒煤气热量, 通过强制循环最终将热量带出;外层为隔热和保护层, 通过合理的保温设计, 改善了原有上升管存在的表面温度过高的问题, 同时对中间层的换热核心部分进行结构保护。
上升管取热装置采用特殊耐高温、无应力自由膨胀式取热结构, 没有任何热应力产生, 不存在热胀冷缩导致的局部应力;导热油传热管为无缝钢管整弯拼接而成, 制造过程中对接焊缝100%拍片探伤, 确保了设备的安全可靠。
1.2.2 导热油蒸发器
导热油蒸发器为一用一备, 可随时切换, 便于单台设备的年检;导热油蒸发器主要由U型管束、壳体和管箱等组成, 导热油走管程, 壳程为水-饱和蒸汽, 利用高温导热油来加热给水, 使其汽化产生饱和蒸汽。
导热油蒸发器作为产生蒸汽的核心部件, 其制造工艺考虑了以下几个问题:U形换热管与管板在180~240MPa下胀接, 胀接完后试压, 无泄漏后, 再采用管口自动焊机;管板、折流板等均为精加工件, 避免了换热管的机械磨损导致使用中出现局部腐蚀;设备结构充分避免了设备氧腐蚀、碱脆、碱腐蚀和垢下腐蚀等。
1.2.3 导热油过热器
导热油过热器主要由U型管束、壳体和管箱等组成, 导热油走管程, 壳程为饱和-过热蒸汽, 利用高温导热油加热蒸汽为过热蒸汽。
1.3 技术优势

采用导热油作为传热介质, 所选导热油最高操作温度高达345℃, 导热油经上升管取热装置吸热升温后, 送至导热油过热器、导热油蒸发器与汽水系统换热, 降温后的导热油通过强制循环泵再回到上升管取热装置再次吸热, 实现密闭循环。相对于常规直接汽化冷却式焦炉上升管余热回收技术, 分布式余热回收技术在长期运行安全性、蒸汽品质方面具有如下优势:
(1) 导热油最高操作温度高达345℃, 导热油过热器、导热油蒸发器等设备按 压力4.0MPa及以上设计制造, 因此可产3.82MPa、300℃以下品质蒸汽, 蒸汽品质高, 用途更广泛;常规汽化冷却式焦炉上升管余热回收技术, 由于受上升管取热装置承压限制, 一般只产0.8MPa以下饱和蒸汽。
(2) 无论产何种压力的蒸汽, 上升管取热装置内、外筒均为常压条件工作, 内筒仅承受荒煤气压力, 外筒工作压力为大气压, 上升管取热装置中导热油传热管的工作压力只需克服导热油循环阻力, 正常工作压力小于0.5MPa, 压力较低, 进一步降低了泄漏风险;常规汽化冷却式焦炉上升管余热回收技术, 上升管取热装置承压取决于汽包蒸汽压力。
(3) 除可间接产高品质蒸汽外, 高温导热油可远距离输送, 直接用于煤调湿或蒸氨等焦化工序, 实现热量直接高效利用。
(4) 不同于汽化冷却, 导热油在循环过程中始终稳定为液态, 不发生汽化, 不结垢, 不存在局部汽堵, 不会因受热不均发生管道爆裂;常规汽化冷却式焦炉上升管余热回收技术, 取热装置内污垢沉淀较多, 且单个取热装置无法实现在线排污, 影响设备长期运行的安全性。
(5) 汽水排污集中在导热油过热器和导热油蒸发器内, 对给水水质要求低, 可采用软化水作为系统补给水水源;常规汽化冷却式焦炉上升管余热回收技术, 为减少取热装置内结垢, 对给水水质要求高, 必须采用除盐水。
(6) 导热油的导热系数低, 约为水导热系数的15%~20%, 且其可操作温度高, 上升管取热装置干烧后, 无需降温或更换, 可立刻再次投入使用, 不会发生爆管。
(7) 采用分布式余热回收技术:可实时监控导热油的进油总管温度和回油总管温度, 通过油温调节阀自动控制上升管余热回收装置入口导热油温度, 可有效控制上升管内壁温度和荒煤气出口温度, 使其壁面温度维持在500℃以上, 有效防止荒煤气中焦油蒸汽结焦;而常规直接汽化冷却式焦炉上升管余热回收技术, 其换热介质温度为汽包压力饱和水温度, 随汽包压力波动而波动, 特别在启停炉过程中, 受影响较大。
(8) 采用焦炉上升管取热装置多支路换热控制技术, 在导热油系统设置有油压控制阀, 通过调节油压控制阀开度, 达到均衡控制各上升管取热装置间热媒流量及合理取热。
1.4 主要技术指标
采用导热油作为媒介取热, 特殊结构设计及独特的阻热保温技术, 结构安全可靠, 产品指标如下:
平均蒸汽量约110kg/t;
蒸汽压力≤3.82MPa;
蒸汽温度≤300℃。
2、技术经济分析
以100万t/a焦化为例, 回收上升管荒煤气余热, 可产3.82MPa、约300℃参数以下过热蒸汽或饱和蒸汽约11万t/a, 按照120元/t的蒸汽价格计算, 每年营业收入1320万元, 年运行成本约150万元, 年税前直接利润总额约1170万元。
焦炉上升管荒煤气显热回收对荒煤气的后续冷却及处理带来额外增效, 减少循环氨水循环量30%~35%, 减少煤气回收车间煤气初冷器热负荷30%~35%,减少煤气回收车间煤气初冷器冷却用循环水30%~35%,同时减少循环水系统电耗和补充水消耗, 具有良好的经济及社会效益。
总结
近几年国内焦炉上升管荒煤气余热回收利用进入实际应用, 进入快速发展期, 采用导热油作为媒介取热的分布式余热回收技术—介质浴式可降低焦化工序能耗约11kgce/t, 并在长期运行安全性、蒸汽品质和产汽品质指标等方面具有明显优势, 为焦化厂焦炉上升管余热回收提供了一种更高效、安全可靠的解决方案。

内容来源:余热利用


威旭环保
威旭环保专注于燃烧器、燃烧机、工业燃烧设备的设计、制造、销售为一体的科技型公司,专业提供燃烧器定制的解决方案,为客户提供完善的售后维保服务。联系电话:4000-133-168

© 2021 燃烧器定制 | 网站备案:粤ICP备11069864号